翻訳と辞書
Words near each other
・ Imagawa Station
・ Imagawa Station (Niigata)
・ Imagawa Station (Osaka)
・ Imagawa Ujichika
・ Imagawa Ujiteru
・ Imagawa Ujizane
・ Imagawa Yoshimoto
・ Imagawa Yoshitada
・ Imagawayaki
・ Imagbon
・ IMAGE
・ Image
・ Image (album)
・ Image (Angel novel)
・ Image (board game)
Image (category theory)
・ Image (disambiguation)
・ Image (journal)
・ Image (magazine)
・ Image (mathematics)
・ Image 1983–1998
・ Image analogy
・ Image analysis
・ Image and object order rendering
・ Image and Reality of the Israel–Palestine Conflict
・ Image and Scanner Interface Specification
・ Image antenna
・ Image Bukhan
・ Image burn-in
・ Image Capture


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Image (category theory) : ウィキペディア英語版
Image (category theory)
Given a category ''C'' and a morphism
f\colon X\to Y in ''C'', the image of ''f'' is a monomorphism h\colon I\to Y satisfying the following universal property:
#There exists a morphism g\colon X\to I such that f = hg.
#For any object Z with a morphism k\colon X\to Z and a monomorphism l\colon Z\to Y such that f = lk, there exists a unique morphism m\colon I\to Z such that h = lm.
Remarks:
# such a factorization does not necessarily exist
# ''g'' is unique by definition of monic (= left invertible, abstraction of injectivity)
# ''m'' is monic.
# ''h''=''lm'' already implies that ''m'' is unique.
# ''k''=''mg''

The image of ''f'' is often denoted by im ''f'' or Im(''f'').
One can show that a morphism ''f'' is monic if and only if ''f'' = im ''f''.
==Examples==

In the category of sets the image of a morphism f\colon X \to Y is the inclusion from the ordinary image \ to Y. In many concrete categories such as groups, abelian groups and (left- or right) modules, the image of a morphism is the image of the correspondent morphism in the category of sets.
In any normal category with a zero object and kernels and cokernels for every morphism, the image of a morphism f can be expressed as follows:

:im ''f'' = ker coker ''f''

This holds especially in abelian categories.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Image (category theory)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.